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Behind the Curtain: The Role of Explainable AI 
in Securities Markets
By Collin Starkweather* and Izzy Nelken**

The renowned statistician George Box famously observed that “all models are wrong, but some are 
useful.” His statement implicitly acknowledges that scientific models are not just useful for their 
predictive abilities, but also for their ability to explain the world around us.1 

Whether we care about the accuracy of a statistical model or want to understand why it gave a 
prediction is an unresolved tension whose consideration is timely and particularly germane to those 
adopting artificial intelligence and machine learning (AI and ML) techniques in financial markets. 

To date, many AI and ML algorithms are considered “black-boxes” that may provide relatively 
accurate predictions, but at the cost of comprehensibility.2 As concerns about the nature of model 
results (as opposed to merely the predictive accuracy) have gained traction, a new area of research has 
emerged to address these concerns.

More generally, the use of models to explain, rather than simply predict, is an ongoing and rapidly 
developing area of research in AI and ML,3 where many models are characterized by a size and 
complexity (and corresponding opacity) that dwarfs their classical statistical brethren.4 

In a recent overview of AI in the securities industry, FINRA observed that AI and ML technology 
is “transforming the financial services industry across the globe.”5 This article discusses how recent 
advances in explainability and interpretability inform the use AI and ML in securities markets. 
Though it has not been the focus of attention in the popular or financial industry press, it is 
becoming increasingly relevant in securities markets, where AI and ML techniques have seen rapid 
adoption across a wide range of market participants and operational roles. 

Although the terms “explainability” and “interpretability” have been evolving in the vernacular 
and are often used relatively interchangeably, for ease of explication, we’ll use the former term 
throughout.6 We’ll define “explainability” as the ability of an algorithm to explain or to present the 
reasons a given output was produced in terms understandable to a human.7 

* Collin Starkweather, Ph.D., is the founder of Starkweather Economics LLC, and is an economics and technology 
consultant specializing in complex litigation and other matters related to artificial intelligence and machine learning, 
technology, finance, and competition economics.

** Izzy Nelken, Ph.D., is the founder of Super Computer Consulting, Inc. He is a member of the CBOE Product Development 
Committee and has served as a consultant or expert witness on several matters involving allegations of market 
manipulation and other securities matters.
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The Need for Explainability

AI and ML techniques have been making rapid inroads into a broad range of industries ranging from 
health care to logistics to banking and financial services. Their efficacy at tasks such as image recogni-
tion and manipulation, natural language processing, and autonomous vehicle navigation is by now 
well known,8 and their broad application has also focused popular attention on some of the more 
opaque techniques in the AI and ML toolkit. 

Many AI and ML techniques have the character of a “black box,” in which the connection between 
model inputs and outputs may not be clear, even to the modeler.9 For example, deep learning tech-
niques, which rely on the application of deeply-layered neural networks, are commonly used for 
image recognition, among other things.10 A deep learning application may enable a human face to be 
identified in a photo, but be unable to offer any insight as to how it recognized the face.11 

There are a variety of use cases where there may be important considerations other than predictive 
accuracy. The ability to explain or interpret model results may be of considerable value to the model 
design process. It is also particularly important in settings where trust or fairness are integral to the 
process. It is one thing to be targeted for advertising or have friends identified in photos uploaded to 
social media by an opaque algorithm and quite another to be denied a loan, sentenced to prison,12 or 
to receive sub-standard healthcare.13

The remainder of this article will review regulatory and market incentives driving development of 
explainable AI and ML techniques and provide a brief overview of recent developments in those 
techniques. Then we’ll discuss increasing adoption of AI and ML techniques by securities market 
participants. Finally, we’ll consider the ways that recent advancements will inform the nature of AI 
and ML adoption in securities markets, where it has implications ranging from trading model design 
processes to risk management to regulatory and compliance functions.

Incentivizing Explainable AI 
In recent years, regulators have become increasingly focused on compliance issues that arise in the 
context of AI and ML models and legislators have begun introducing explicit requirements for 
explainability into various jurisdictions’ legal frameworks. 

For example, banking regulators in the US have focused considerable attention on potential 
bias against protected classes in business practices such as consumer lending. The Equal Credit 
Opportunity Act (ECOA) requires creditors to provide consumers specific reasons for an adverse 
action such as a denial of credit.14 The US Consumer Financial Protection Bureau (CFPB) recently 
commented that “AI may create or amplify risks, including risks of unlawful discrimination, lack 
of transparency, and privacy concerns” and that it is “particularly interested in exploring … [t]
he accuracy of explainability methods, particularly as applied to deep learning and other complex 
ensemble models” and “[h]ow to convey the principal reasons [for an adverse action] in a manner 
that accurately reflects the factors used in the model and is understandable to consumers.”15 
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California, whose legal framework on data privacy and related issues have informed legislative efforts 
at the federal level, recently put into effect the California Consumer Privacy Act (CCPA), which 
has been called “the most thorough privacy regulation in the US.”16 Mike Leone, the Senior Analyst 
at the Enterprise Strategy Group, commented to Forbes that “it will force those leveraging AI to 
prioritize explainability as a feature of their chosen AI platform, where insights derived from AI must 
be explained to a point where they can be understood by a human.”17

In Europe, the EU’s General Data Protection Regulation (GDPR) enacted a so-called “right to 
explanation” that provides a broadly encompassing prescription that organizations be able to explain 
their algorithmic decisions that “significantly affect” users.18 

A more broadly relevant consideration may be the model design process itself. The ability to explain 
links between model inputs and outputs can provide model designers with important context by 
which to refine and improve their models, and when unusual or unexpected behaviors arise, may 
facilitate the analysis of those behaviors. 

As one researcher observed, where gains from model design improvements exceed the gains in 
performance from the use of a “black box” model, “more interpretability leads to better overall 
accuracy.”19 This notion has been memorialized in a variety of widely-used data mining and 
knowledge discovery processes.20 

Recent Developments in Explainability 
In response to the increasing focus on explainability by public and private interests, rapid im-
provements have been made in the last few years in the development of explainable AI and ML 
techniques. With many of these advancements, the oft-cited tradeoff between explainability and 
predictive accuracy21 has been substantially diminished or effectively eliminated. As senior data 
scientists at H2O.ai, provider of a leading open source AI and ML platform, commented, “you can 
now have your accuracy and interpretability cake…and eat it too.”22

There are three primary approaches to explainability, each with advantages and disadvantages. When 
considering relative advantages and disadvantages, it is important to bear in mind that explainability 
is not binary in nature, but instead exists on a continuum. And similar to statistical models, explain-
able models may provide you with important insights into various aspects of the underlying system, 
but they can’t explain everything. 

The first and most straight-forward approach to explainability involves simplifying models suf-
ficiently to facilitate ready interpretation of results. While there is some appeal to this approach in its 
simplicity, an obvious drawback is the loss of performance that often accompanies simplification of 
the model. Although advances using other approaches have produced claims that you can “have your 
cake and eat it too,” when modeling a system with a high degree of complexity, the tradeoff between 
performance and explainability is an important consideration with this approach.23 
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A second approach involves post hoc analysis of “black box” models, in which parameters may be 
adjusted or other means used to determine how changes to inputs might impact changes to outputs. 
This approach relies on a well-established theoretical foundation,24 and because it retains the use of 
“black box” models, there is no loss of model efficacy. 

However, there are limitations to this approach. The insights provided by this approach may be 
localized to the domain of the immediate analysis,25 may lack fidelity relative to the model being 
explained, or may offer explanations that are insufficiently detailed.26 As a result of these shortcom-
ings, some prominent voices have recommended against the use of this approach, leading one scholar 
to go so far as to state that “explainable black boxes should be avoided in high-stakes decisions” in 
domains such as healthcare and criminal justice.27 

A third approach which has acquired more mindshare recently involves designing ML techniques 
that are explainable from the ground up. This approach has gained traction in recent years as demand 
for explainability has led to active interest in the research community and a proliferation of new 
models including explainable neural networks (XNNs), explainable boosting machines (XBMs) , 
scalable Bayesian rule lists, and super-sparse linear integer models (SLIMs), among others.28 

While the features baked into these models offer the modeler insights that their more opaque cousins 
do not,29 there have been concerns among potential adopters that the explainability comes at a price 
in terms of model efficacy. Recent research indicates that for many of these models, and in a variety 
of settings, these concerns may be overblown or even unjustified.30 

Roles for Explainable AI in Securities Markets
In this section, we will focus on AI and ML adoption and usage in front office trading, portfolio 
management, and related operations and in mid office risk management and compliance operations, 
though AI- and ML-based applications are seeing deployment with securities markets participants in 
a wide range of operational roles in the front, mid, and back offices including customer engagement, 
brokerage account management, administrative functions, and cybersecurity.31 

AI and ML in the Front Office 

AI and ML techniques have seen rapid adoption in front office operations in recent years. As far 
back as early 2016, the BBC was reporting that “[h]edge funds are increasingly turning to artificial 
intelligence in order to spot trends to try to make money for their customers”32 and prominent asset 
managers such as BlackRock have in recent years been reported to be refocusing portfolio manage-
ment operations on machine learning.33 An AI powered ETF (AIEQ) was issued in October 2017 
that “fully utilized” AI as a method for stock selection.34 Incubators such as the CloudQuant Trading 
Strategy Incubator, Merantix, and others are actively supporting the development of innovative AI 
and ML trading models.35,36 
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As previously discussed, explainable techniques can provide model designers with important insights 
that can allow them to refine and improve their models, though they may come with costs in terms 
of model efficacy or development effort. Recent advances have enhanced the efficacy and decreased 
the costs associated with explainable techniques, in some cases to the point where those tradeoffs 
may no longer be a substantive factor, yielding greater potential for adoption of these techniques to 
enhance profitability of modeling efforts in trading, portfolio management, and related operations. 

Over and above model efficacy, regulators have issued guidance and proposed ”Risk Principles” that 
may inform the role of explainability in the model design process. FINRA has specifically noted that 
supervisory responsibilities under FINRA Rule 3110 applies to all of a firm’s associated persons and 
its businesses, including supervising activities related to AI applications,37 and promulgates super-
visory best practices for firms engaging in algorithmic trading strategies. Its guidance includes, “at a 
minimum, a basic summary description of algorithmic strategies that enables supervisory, compli-
ance and regulatory staff to understand the intended function of an algorithm without the need to 
resort, as an initial matter, to direct code review.”38 

In response to concerns about potential systemic risk associated with algorithmic trading, Regula-
tion Automated Trading (Regulation AT) was proposed by the CFTC in 2015 that would impose 
substantial reporting requirements with respect to trading algorithms,39 including requirements 
to establish and maintain a source code repository that documents the strategy and design of 
proprietary algorithmic trading software. That rule would potentially have made source code 
available for inspection by the CFTC or Department of Justice without a subpoena40 and “at-
tracted intense opposition.”41 

Regulation AT has recently been abandoned and replaced with a proposed rule addressing Electronic 
Trading Risk Principles. The proposed Electronic Trading Risk Principles regulation provides that 
exchanges “must adopt and implement rules governing market participants … to prevent, detect, 
and mitigate market disruptions or system anomalies associated with electronic trading.”42 There has 
been no clear indication yet of the form these rules will take in practice. 

However, in the context of trading model design, beyond any specific regulatory requirements, 
whether and the degree to which explainable techniques are adopted ultimately remains a judgment 
call based on perceived costs and benefits. 

AI and ML in the Mid Office 

In the context of risk management, algorithmic trading as a general matter can give rise to its own 
set of particular risk factors. Among other things, algorithmic trading leverages decision-making in 
trading operations, and with it potential risk.43 The exceptional speed with which trading strate-
gies can be executed can lead to exceptionally rapid accumulation of losses and limit the capability 
of management to perform timely interventions. Algorithmic trading may also add complexity to 
management and oversight, necessitating additional internal auditing, testing, and change manage-
ment functions.44 
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With algorithmic trading based on traditional conditional logic that relies on a set of rules imple-
mented in software, the software (if properly implemented) behaves in an entirely predictable man-
ner, and given sufficient resources, internal auditing and review processes can determine the reason 
for any observed behaviors based on the specific rules implemented in the algorithm. 

Many AI and ML techniques, however, may make use of hundreds, or even thousands, of inputs and 
result in dynamics that are characteristically challenging to explain, even to the model designers.45 
Explainable techniques may allow the modeler some insight into unexpected or aberrant behaviors.

Moreover, over and above model opacity, AI and ML techniques more generally can bring their 
own, unique set of attendant risks,46 leading FINRA to recently comment that “[f ]irms that employ 
AI-based applications may benefit from reviewing and updating their model risk management 
frameworks to address the new and unique challenges AI models may pose.”47 

With regards to explainability, FINRA characterized it as a “key consideration in the model risk 
management process for AI-based applications” and included review of the explainability of model 
output among “potential areas for firms to consider as they update their model risk management 
programs to reflect the use of AI models.”48 

In addition to risk management, AI and ML techniques have seen adoption in mid-office monitoring 
and compliance operations across a range of market participants.

In its recent FINRA survey of AI in the securities industry, industry participants indicated “they are 
spending significant time and resources in developing AI-based applications to enhance their compli-
ance and risk management functions”49 including surveillance and monitoring functions that “move 
beyond ‘traditional rule-based systems ….’”50 

FINRA commented specifically in the survey on explainability in compliance, audit, and risk 
management functions:

An appropriate level of explainability may be particularly important in AI applications that have 
autonomous decision-making features (e.g., deep learning-based AI applications that trigger auto-
mated investment decision approvals). Against this backdrop, firms noted that their compliance, 
audit, and risk personnel would generally seek to understand the AI-models to ensure that they 
conform to regulatory and legal requirements, as well as the firms’ policies, procedures, and risk 
appetites before deployment. 

In addition to internal monitoring and compliance functions adopted by securities market partici-
pants, exchanges have introduced AI and ML based trade surveillance51 and a variety of third-party 
vendors have introduced AI- and ML-based surveillance products, with monitoring services targeting 
trading activities as well as communications.52 

As an example of the ready application of AI and ML techniques to trade surveillance, as well as 
potential benefits and limitations of explainable techniques, consider “disruptive” trading activity 
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that “is, or of the character of” spoofing, which the Dodd-Frank Act defines as “bidding or offering 
with intent to cancel the bid or offer before execution.”53 

Market participants have focused considerable attention and resources on implementing trade sur-
veillance systems to detect spoofing and other trading activity of concern to regulators. In some cases, 
regulators have required targets of regulatory actions to maintain systems and controls “reasonably 
designed” to “detect patterns of activity that might constitute spoofing activity.”54 

Regulators have identified a variety of patterns of trading behavior they consider to be spoofing, 
but these patterns are merely examples and do not constitute a precise definition. Moreover, absent 
broader context, these trading patterns may be indistinguishable from legitimate trading activity 
and do not in and of themselves establish scienter. Commentators and defendants alike have 
argued that the definition of spoofing is impermissibly vague, though the courts have in various 
circumstances disagreed.55 

The pattern matching capabilities of AI and ML have made them a natural fit for trade surveillance 
for these kinds of trading patterns by exchanges, in-house compliance operations, and third-party 
service providers.56 Among third-party monitoring and compliance service providers, incumbent 
providers, which had previously relied on rule-based approaches, have begun adopting AI and ML 
techniques while new service providers have emerged whose products have been built from the 
ground up based on AI and ML techniques.57 And securities market regulators have been focusing 
on AI and ML techniques in their efforts to identify and prosecute malfeasance.58 

While these techniques may identify patterns of trading activity consistent with activity regulators 
consider to be of concern, they may not provide compliance personnel with insights into why a 
particular cluster of activity was identified or the broader context of the activity. For that reason, 
products built using AI and ML techniques have begun including explainability features.59 
However, for trading patterns such as spoofing where interpretation may involve nuance, in making 
a determination on the nature of the trading activity, explainable AI and ML techniques in their 
present form may be able to enhance, but are by no means yet a substitute, for review by a human 
with relevant expertise. 

Going forward, the adoption of AI and ML will likely continue to extend its reach beyond the 
regulatory contexts discussed in this article. Though it has not yet gained traction in areas such as 
regulatory reporting, in a recent joint white paper by Wolters Kluwer and PwC, based on a proof-
of-concept exercise, the authors concluded that it was “likely that production reporting mechanisms 
will incorporate AI and ML in the near future.”60

Conclusion
The selection of explainable AI and ML techniques have improved substantially in recent years as 
has the efficacy of those techniques, and it remains an extremely active subject of research. As such, 
we anticipate that improvements in these techniques will continue going forward, as will incentives 
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for broader adoption across a spectrum of securities market participants and operations. The choices 
various securities markets participants make to incorporate explainable AI and ML techniques into 
their modeling efforts and the nature of that adoption are multifaceted and will depend on the 
particular circumstances they face. We recommend that securities market participants who may be 
deploying AI and ML techniques in their organizations keep abreast of developments in the field 
and consider the adoption of explainable AI and ML techniques where they have the potential to 
enhance profitability, improve operations, and mitigate risk.
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